
Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Module 06: Programming in C++
Constants and Inline Functions

Sourangshu Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

sourangshu@cse.iitkgp.ac.in

Slides taken from NPTEL course on Programming in C++

by Prof. Partha Pratim Das

CS20202: Software Engineering Sourangshu Bhattacharya 1

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Module Objectives

Understand const in C++ and contrast with Manifest
Constants

Understand inline in C++ and contrast with Macros

CS20202: Software Engineering Sourangshu Bhattacharya 2

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Module Outline

const-ness and cv-qualifier

Notion of const
Advantages of const

Natural Constants – π, e
Program Constants – array size
Prefer const to #define

const and pointer

const-ness of pointer / pointee. How to decide?

Notion of volatile

inline functions
Macros with params

Advantages
Disadvantages

Notion of inline functions

Advantages

CS20202: Software Engineering Sourangshu Bhattacharya 3

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Program 06.01: Manifest constants in C

Manifest constants are defined by #define

Manifest constants are replaced by CPP (C Pre-Processor)
Source Program Program after CPP

#include <iostream>

#include <cmath>

using namespace std;

#define TWO 2

#define PI 4.0*atan(1.0)

int main() {

int r = 10;

double peri =

TWO * PI * r;

cout << "Perimeter = "

<< peri << endl;

return 0;

}

// Contents of <iostream> header replaced by CPP

// Contents of <cmath> header replaced by CPP

using namespace std;

// #define of TWO consumed by CPP

// #define of PI consumed by CPP

int main() {

int r = 10;

double peri =

2 * 4.0*atan(1.0) * r; // Replaced by CPP

cout << "Perimeter = "

<< peri << endl;

return 0;

}

Perimeter = 314.159 Perimeter = 314.159

• TWO is a manifest constant • CPP replaces the token TWO by 2

• PI is a manifest constant • CPP replaces the token PI by 4.0*atan(1.0)

• TWO & PI look like variables • Compiler sees them as constants

CS20202: Software Engineering Sourangshu Bhattacharya 4

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Notion of const-ness

The value of a const variable cannot be changed after definition

const int n = 10; // n is an int type variable with value 10

// n is a constant

...

n = 5; // Is a compilation error as n cannot be changed

...

int m;

int *p = 0;

p = &m; // Hold m by pointer p

*p = 7; // Change m by p; m is now 7

...

p = &n; // Is a compilation error as n may be changed by *p = 5;

Naturally, a const variable must be initialized when defined

const int n; // Is a compilation error as n must be initialized

A variable of any data type can be declared as const

typedef struct _Complex {

double re;

double im;

} Complex;

const Complex c = {2.3, 7.5}; // c is a Complex type variable

// It is initialized with c.re = 2.3 and c.im = 7.5

// c is a constant

...

c.re = 3.5; // Is a compilation error as no part of c can be changed

CS20202: Software Engineering Sourangshu Bhattacharya 5

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Program 06.02: Compare #define and const

Using #define Using const

#include <iostream>

#include <cmath>

using namespace std;

#define TWO 2

#define PI 4.0*atan(1.0)

int main() {

int r = 10;

double peri =

TWO * PI * r;

cout << "Perimeter = "

<< peri << endl;

return 0;

}

#include <iostream>

#include <cmath>

using namespace std;

const int TWO = 2;

const double PI = 4.0*atan(1.0);

int main() {

int r = 10;

double peri =

TWO * PI * r; // No replacement by CPP

cout << "Perimeter = "

<< peri << endl;

return 0;

}

Perimeter = 314.159 Perimeter = 314.159

• TWO is a manifest constant • TWO is a const variable initialized to 2

• PI is a manifest constant • PI is a const variable initialized to 4.0*atan(1.0)

• TWO & PI look like variables • TWO & PI are variables
• Types of TWO & PI may be indeterminate • Type of TWO is const int

• Type of PI is const double

CS20202: Software Engineering Sourangshu Bhattacharya 6

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Advantages of const

Natural Constants like π, e, Φ (Golden Ratio) etc. can be
compactly defined and used

const double pi = 4.0*atan(1.0); // pi = 3.14159

const double e = exp(1.0); // e = 2.71828

const double phi = (sqrt(5.0) + 1) / 2.0; // phi = 1.61803

const int TRUE = 1; // Truth values

const int FALSE = 0;

const int null = 0; // null value

Note: NULL is a manifest constant in C/C++ set to 0.

Program Constants like number of elements, array size etc. can
be defined at one place (at times in a header) and used all over
the program

const int nArraySize = 100;

const int nElements = 10;

int main() {

int A[nArraySize]; // Array size

for (int i = 0; i < nElements; ++i) // Number of elements

A[i] = i * i;

return 0;

}

CS20202: Software Engineering Sourangshu Bhattacharya 7

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Advantages of const

Prefer const over #define

Using #define Using const

Manifest Constant Constant Variable

• Is not type safe • Has its type
• Replaced textually by CPP • Visible to the compiler
• Cannot be watched in debugger • Can be watched in debugger
• Evaluated as many times as replaced • Evaluated only on initialization

CS20202: Software Engineering Sourangshu Bhattacharya 8

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

const and Pointers

const-ness can be used with Pointers in one of the two ways:

Pointer to Constant data where the pointee (pointed
data) cannot be changed
Constant Pointer where the pointer (address) cannot be
changed

Consider usual pointer-pointee computation (without const):

int m = 4;

int n = 5;

int * p = &n; // p points to n. *p is 5

...

n = 6; // n and *p are 6 now

*p = 7; // n and *p are 7 now. POINTEE changes

...

p = &m; // p points to m. *p is 4. POINTER changes

*p = 8; // m and *p are 8 now. n is 7. POINTEE changes

CS20202: Software Engineering Sourangshu Bhattacharya 9

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

const and Pointers: Pointer to Constant data

Consider pointed data

int m = 4;

const int n = 5;

const int * p = &n;

...

n = 6; // Error: n is constant and cannot be changed

*p = 7; // Error: p points to a constant data (n) that cannot be changed

p = &m; // Okay

*p = 8; // Okay

Interestingly,

int n = 5;

const int * p = &n;

...

n = 6; // Okay

*p = 6; // Error: p points to a ’constant’ data (n) that cannot be changed

Finally,

const int n = 5;

int * p = &n; // Error: If this were allowed, we would be able to change constant n

...

n = 6; // Error: n is constant and cannot be changed

*p = 6; // Would have been okay, if declaration of p were valid

CS20202: Software Engineering Sourangshu Bhattacharya 10

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

const and Pointers: Example

What will be the output of the following program:

#include <iostream>

using namespace std;

int main() {

const int a = 5;

int *b;

b = (int *) &a;

*b = 10;

cout << a << " " <<b<<" "<< &a <<" "<< *b <<"\n";

}

CS20202: Software Engineering Sourangshu Bhattacharya 11

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

const and Pointers: Example

What will be the output of the following program:

#include <iostream>

using namespace std;

int main() {

const int a = 5;

int *b;

b = (int *) &a;

*b = 10;

cout << a << " " <<b<<" "<< &a <<" "<< *b <<"\n";

}

Standard g++ compiler prints: 5 0x16b58f4ec 0x16b58f4ec 10

b actually points to a

But when accessed through a the compiler substitutes the constant expression
Technically the behavior is undefined

CS20202: Software Engineering Sourangshu Bhattacharya 12

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

const and Pointers: Constant Pointer

Consider pointer

int m = 4, n = 5;

int * const p = &n;

...

n = 6; // Okay

*p = 7; // Okay. Both n and *p are 7 now

...

p = &m; // Error: p is a constant pointer and cannot be changed

By extension, both can be const

const int m = 4;

const int n = 5;

const int * const p = &n;

...

n = 6; // Error: n is constant and cannot be changed

*p = 7; // Error: p points to a ’constant’ data (n) that cannot be changed

...

p = &m; // Error: p is a constant pointer and cannot be changed

Finally, to decide on const-ness, draw a mental line through *

int n = 5;

int * p = &n; // non-const-Pointer to non-const-Pointee

const int * p = &n; // non-const-Pointer to const-Pointee

int * const p = &n; // const-Pointer to non-const-Pointee

const int * const p = &n; // const-Pointer to const-Pointee

CS20202: Software Engineering Sourangshu Bhattacharya 13

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

const and Pointers: The case of C-string

Consider the example:

char * str = strdup("IIT, Kharagpur");

str[0] = ’N’; // Edit the name

cout << str << endl;

str = strdup("JIT, Kharagpur"); // Change the name

cout << str << endl;

Output is:

NIT, Kharagpur

JIT, Kharagpur

To stop editing the name:

const char * str = strdup("IIT, Kharagpur");

str[0] = ’N’; // Error: Cannot Edit the name

str = strdup("JIT, Kharagpur"); // Change the name

To stop changing the name:

char * const str = strdup("IIT, Kharagpur");

str[0] = ’N’; // Edit the name

str = strdup("JIT, Kharagpur"); // Error: Cannot Change the name

To stop both:

const char * const str = strdup("IIT, Kharagpur");

str[0] = ’N’; // Error: Cannot Edit the name

str = strdup("JIT, Kharagpur"); // Error: Cannot Change the name

CS20202: Software Engineering Sourangshu Bhattacharya 14

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Notion of volatile

Variable Read-Write

The value of a variable can be read and / or assigned at
any point of time
The value assigned to a variable does not change till a
next assignment is made (value is persistent)

const

The value of a const variable can be set only at
initialization – cannot be changed afterwards

volatile

In contrast, the value of a volatile variable may be
different every time it is read – even if no assignment has
been made to it
A variable is taken as volatile if it can be changed by
hardware, the kernel, another thread etc.

cv-qualifier: A declaration may be prefixed with a
qualifier – const or volatile

CS20202: Software Engineering Sourangshu Bhattacharya 15

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Using volatile

Consider:

static int i;

void fun(void) {

i = 0;

while (i != 100);

}

This is an infinite loop! Hence the compiler should optimize as:

static int i;

void fun(void) {

i = 0;

while (1); // Compiler optimizes

}

Now qualify i as volatile:

static volatile int i;

void fun(void) {

i = 0;

while (i != 100); // Compiler does not optimize

}

Being volatile, i can be changed by hardware anytime. It waits till

the value becomes 100 (possibly some hardware writes to a port).
CS20202: Software Engineering Sourangshu Bhattacharya 16

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Program 06.03: Macros with Parameters

Macros with Parameters are defined by #define

Macros with Parameters are replaced by CPP
Source Program Program after CPP

#include <iostream>

using namespace std;

#define SQUARE(x) x * x

int main() {

int a = 3, b;

b = SQUARE(a);

cout << "Square = "

<< b << endl;

return 0;

}

// Contents of <iostream> header replaced by CPP

using namespace std;

// #define of SQUARE(x) consumed by CPP

int main() {

int a = 3, b;

b = a * a; // Replaced by CPP

cout << "Square = "

<< b << endl;

return 0;

}

Square = 9 Square = 9

• SQUARE(x) is a macro with one param • CPP replaces the SQUARE(x) substituting x with a

• SQUARE(x) looks like a function • Compiler does not see it as function

CS20202: Software Engineering Sourangshu Bhattacharya 17

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Pitfalls of macros

Consider the example:

#include <iostream>

using namespace std;

#define SQUARE(x) x * x

int main() {

int a = 3, b;

b = SQUARE(a + 1); // Wrong macro expansion

cout << "Square = " << b << endl;

return 0;

}

Output is 7 in stead of 16 as expected. On the expansion line it gets:

b = a + 1 * a + 1;

To fix:

#define SQUARE(x) (x) * (x)

Now:

b = (a + 1) * (a + 1);

CS20202: Software Engineering Sourangshu Bhattacharya 18

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Pitfalls of macros

Continuing ...

#include <iostream>

using namespace std;

#define SQUARE(x) (x) * (x)

int main() {

int a = 3, b;

b = SQUARE(++a);

cout << "Square = " << b << endl;

return 0;

}

Output is 25 in stead of 16 as expected. On the expansion line it gets:

b = (++a) * (++a);

and a is incremented twice before being used! There is no easy fix.

CS20202: Software Engineering Sourangshu Bhattacharya 19

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

inline Function

An inline function is just another functions

The function prototype is preceded by the keyword inline

An inline function is expanded (inlined) at the site of its call
and the overhead of passing parameters between caller and
callee (or called) functions is avoided

CS20202: Software Engineering Sourangshu Bhattacharya 20

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Program 06.04: Macros as inline Functions

Define the function

Prefix function header with inline

Compile function body and function call together
Using macro Using inline

#include <iostream>

using namespace std;

#define SQUARE(x) x * x

int main() {

int a = 3, b;

b = SQUARE(a);

cout << "Square = "

<< b << endl;

return 0;

}

#include <iostream>

using namespace std;

inline int SQUARE(int x) { return x * x; }

int main() {

int a = 3, b;

b = SQUARE(a);

cout << "Square = "

<< b << endl;

return 0;

}

Square = 9 Square = 9

• SQUARE(x) is a macro with one param • SQUARE(x) is a function with one param
• Macro SQUARE(x) is efficient • inline SQUARE(x) is equally efficient
• SQUARE(a + 1) fails • SQUARE(a + 1) works
• SQUARE(++a) fails • SQUARE(++a) works
• SQUARE(++a) does not check type • SQUARE(++a) checks type

CS20202: Software Engineering Sourangshu Bhattacharya 21

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Macros & inline Functions:
Compare and Contrast

Macros inline Functions

• Expanded at the place of calls • Expanded at the place of calls
• Efficient in execution • Efficient in execution
• Code bloats • Code bloats
• Has syntactic and semantic pitfalls • No pitfall
• Type checking for parameters is not done • Type checking for parameters is robust
• Helps to write max / swap for all types • Needs template for the same purpose
• Errors are not checked during compilation • Errors are checked during compilation
• Not available to debugger • Available to debugger in DEBUG build

CS20202: Software Engineering Sourangshu Bhattacharya 22

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Limitations of Function inlineing

inlineing is a directive – compiler may not inline
functions with large body

inline functions may not be recursive

Function body is needed for inlineing at the time of
function call. Hence, implementation hiding is not
possible. Implement inline functions in header files

inline functions must not have two different definitions

CS20202: Software Engineering Sourangshu Bhattacharya 23

Module 06

Sourangshu
Bhattacharya

Objectives &
Outline

const-ness &
cv-qualifier

const-ness

Advantages

Pointers

volatile

inline

functions

Macros

inline

Summary

Module Summary

Revisit manifest constants from C

Understand const-ness, its use and advantages over
manifest constants

Understand the interplay of const and pointer

Understand the notion and use of volatile data

Revisit macros with parameters from C

Understand inline functions and their advantages over
macros

Limitations of inlineing

CS20202: Software Engineering Sourangshu Bhattacharya 24

	Objectives & Outline
	const-ness and cv-qualifier
	Notion of const-ness
	Advantages of const
	const and pointer
	Notion of volatile

	inline functions
	Macros with Params in C
	Notion of inline

	Summary of module-6

